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1 Introduction

When training neural networks, we often rely on empirical wisdom to make optimization related decisions,
such as the optimizer algorithm and important hyperparameter values. There have been efforts in deriving
practical insights from theoretical models. One successful example of such theoretical models is the noisy
quadratic model (NQM) (Zhang et al., 2019). By running simple simulations of the NQM, one can derive
important insights on how factors such as momentum, moving average and preconditioning affect the benefit
of scaling up batch sizes.

However, the NQM has several limitations. One important limitation is that the noise modeling of NQM
does not truthfully reflect the noise from minibatch training. The NQM applies an additive noise to the
gradient, with a constant magnitude throughout the optimization process. However, the minibatch noise is
multiplicative in nature, as it can be considered as a Bernoulli random variable mutliplied to the data points.
Intuitively, the magnitude of minibatch noise should shrink as the optimized variable gets close to a local
optimum. Second, the NQM assumes a quadratic loss function on the network parameters, which corresponds
to a completely linear training dynamics. Although modern neural networks exhibits a surprisingly linear
training dynamics (Jacot et al., 2018; Lee et al., 2019), especially early in the training process, nonlinearities
are still necessary for feature learning and state-of-the-art performance (Chizat et al., 2019; Yang & Hu,
2021; Vyas et al., 2022; Fort et al., 2020). The NQM lacks a way for modeling the nonlinearities in training.

We adopt a flexible framework for modeling stochastic optimization of neural networks. We view the op-
timization as a dynamical system, and use tools from robust control theory to express the convergence of
the dynamical system as the feasibility problem of a linear matrix inequality (LMI). If the LMI is feasible,
then we have certified the convergence of the optimization problem. This methodology is first proposed
by Lessard et al. (2016). In this work, make important adaptations in order to analyzing important elements
in stochastic optimization of neural networks: 1) we derive a truthful model for minibatch noise, and modify
the LMI to work with the average-case performance with respect for minibatch noise; 2) we model the non-
linearity of neural network training as an uncertainty of the network Jacobian throughout the optimization
process. The amount of uncertainty is adjustable, enabling sensitivity analysis on nonlinarity in training.

A notable advantage of our framework is its flexibility. It works for all types of first-order optimizers, and
can certify the worst-case asymptotic convergence rate and steady-state risk. The NQM analysis relies on
the analytic solution of the dynamics of the classic (heavy-ball) momentum optimizer. This makes the NQM
incompatible with other optimizers such as the Nesterov accelerated gradient (NAG) (Nesterov, 1983). In
contrast, our framework seamlessly accommodates all optimizers with a linear state-space representation
(i.e. all first-order optimizers). In fact, our framework predicts important differences between heavy-ball
and NAG (Section 4.1), which are insights that match practical observations.
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A limitation of our framework is that it only deals with asymptotic performance. In practical neural network
training, we often apply early-stopping. Usually, at early stages of training, we observe rapid decrease in
training loss. Asymptotic performance might be overly conservative in many scenarios. Future work should
focus on finite-step performance, potentially following the line of work on Performance Estimation Problem
(PEP) (Drori & Teboulle, 2014; Taylor et al., 2017; 2018; Taylor & Bach, 2019).

2 Background

2.1 Problem setup

Consider the ML model that represents the function f : X → Y, parameterized by θ ∈ Rd:

y = fθ(x).

In this paper, we focus on single-output models (Y ⊂ R) and assume the mean squared-error loss ℓ(x, t; θ) =
(fθ(x) − t)2. Given a training set (x, t) := {(x(i), t(i))}N

i=1, we have,

L(x, t; θ) = 1
2N

N∑
i=1

ℓ(x(i), t(i); θ).

We update the model parameters θ using gradient-based optimization. Let θk be the parameter at timestep
k. We denote the gradient at θk as:

gk := ∇θL(x, t; θk) (1)

2.2 First-order optimizers as state-space models

First order optimizers can be expressed as state-space models. Denote ξ ∈ Rn as the state, which have the
state-space representation:

ξk+1 = Āξk + B̄gk

θk = C̄ξk + D̄gk

For first-order optimizers, we have D̄ = 0.

Example 1: heavy-ball momentum For heavy-ball momentum, we have:

Ā =
[
(1 + β)I −βI

I 0

]
, B̄ =

[
−ηI

0

]
, C̄ =

[
I 0

]
, D̄ = 0

Example 2: Nesterov accelerated gradient For Nesterov accelerated gradient, we have:

Ā =
[
(1 + β)I −βI

I 0

]
, B̄ =

[
−ηI

0

]
, C̄ =

[
(1 + β)I −βI

]
, D̄ = 0

The heavy-ball momentum and NAG have very different dynamics and intuitive interpretations, despite their
updates being similar. For a detailed discussion on these two momentum methods, please refer to Section 5.

2.2.1 Output-space & linearization

We would like to add gradient noise to the system. In particular, we would like the gradient noise to have
covariance C ≈ ∇2

θθL.

g̃k = gk + ωk, ωk ∼ N (0, C) (2)

In order to model the gradient noise with covariance C, we write the optimizer in the output-space. The
optimizer now takes in the output-space gradient ∇yL and outputs the model output y = fθ(x).

2



Output-space gradient ∇yL Using the chain rule, we have:

∇θL(x, t; θ) = J⊤
yθ,k∇yL, Jyθ,k := ∂yk

∂θk
∈ RN×d

To simply notations, we refer to Jyθ,k as Jk from now on. Substitute into the state-space equation:

ξk+1 = Āξk + B̄J⊤
k ∇yL

Linearized model with output y To completely put the optimizer in the output-space, we also need to
output y instead of θ. To do so, we linearize the model around θ∗:

fθ(x) ≈ fθ∗(x) + ∂f

∂θ

∣∣∣
θ=θ∗

(θ − θ∗)

Since θ∗ is a constant, we can “center” the linearization by replacing all quantities with the difference from
the optimal, i.e. by defining θ̄ = θ − θ∗, ȳ = y − y∗ etc. Again, to avoid notational clutter, we drop the
terms involving θ∗. The linearized model is:

yk ≈ J(θ∗)θk

Putting them together, the optimizer in output-space has the following state-space representation:

ξk+1 = Āξk + B̄J⊤
k ∇yLk

yk = J(θ∗)C̄ξk

2.3 Certifying convergence by solving the SDP problem

We use tools from robust control to certify the convergence of an optimization problem. On a high level,
the convergence certification is based on Lyapunov stability theory. For an autonomous system (i.e. without
external input), the system is stable if we can find a Lyapunov function V (ξ) = ξ⊤Pξ (P ≻ 0) such that it
is non-increasing along the trajectory: V (ξk+1) ≤ V (ξk).

Optimizer

∆
pq

Figure 1: Diagram for the interconnected system with the optimizer and the Jacobian uncertainty.

Now, consider the interconnected system in Figure 1. We use dissipativity, a version of Lyapunov stability
theory that is generalized to systems with inputs and outputs, to show that the interconnected system is
stable. The dissipativity of a system with input p and output q is defined with respect to a certain supply
rate s(q, p). Intuitively, the supply rate represents the rate at which energy is injected into the system,
and a system is dissipative if energy of the state (measured by the storage function V (ξ)) increases at a
slower rate than s(q, p). In particular, we let the storage function to be quadratic, V (ξ) = ξ⊤Pξ, in order to
be compatible with numerical optimization. Mathematically, the interconnected system is dissipative with
supply rate s(q, p) if we can

find P ≻ 0 such that V (ξ) = ξ⊤Pξ, and V (ξk+1) − V (ξk) ≤ s(qk, pk). (3)
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Dissipativity has a directly link to the notions of stability we use in this paper. Eventually, equation 3 will
be expressed in terms of a linear matrix inequality (LMI), which we will solve numerically using convex
optimization tools.

In practice, the supply rate often encapsulates parts of the system that are difficult to model: they might be
nonlinear, with uncertainty, or unknown. Therefore, instead of modeling those parts directly, it is common
to specify the supply rate in terms of bounds. In particular, we focus on bounds in the quadratic form[
q
p

]⊤

Π
[
q
p

]
, because they fit well with the LMI. The key part of applying this framework is to find appropriate

quadratic constraints for the optimization problem we are concerned with.

2.4 NQM

We analyze the noisy quadratic model (NQM) using this framework.

The state-space representation of the optimizer in the output-space is:

ξk+1 = Āξk + B̄J⊤(∇yLk + ϵk), ϵk ∼ N (0, I) (4)
yk = J(θ∗)C̄ξk (5)

Since we have a quadratic model, ∇yLk = yk, and Jk = J(θ∗) := J for all k. Substitute into the state-space
representation, we have:

ξk+1 = (Ā + B̄J⊤JC̄)︸ ︷︷ ︸
A

ξk + B̄J⊤︸ ︷︷ ︸
Bw

ϵk (6)

and
yk = JC̄︸︷︷︸

C

ξk (7)

Theorem 1 (NQM asymptotic convergence rate). Consider the optimization on a noisy quadratic model
characterized by (A, Bw) (as defined in equation 6). If for some 0 < ρ < 1, there exists a P ≻ 0 such that:

A⊤PA − ρ2P ≺ 0 (8)

Then the loss asymptotically converges with rate ρ2.

Intuitively, we aim to find a Lyapunov function (analogous to the potential energy of the system) V (ξk) =
ξ⊤

k Pξk such that it decreases at rate at least ρ2 following the dynamics defined in equation 6. Note that the
convergence rate is not affected by the label noise.
Theorem 2 (NQM steady-state risk). For the optimization on a noisy quadratic model (A, Bw) (as defined
in equation 6), for some 0 < γ < 1, if there exists a P ≻ 0 such that:

APA⊤ − P + BwB⊤
w ⪯ 0 (9)

and
Tr(CPC⊤) ≤ γ2 (10)

then the steady-state risk of the optimizer on the noisy-quadratic model is upper-bounded by γ2.

Proofs of Theorem 1 and Theorem 2 can be found in Appendix A.1.

3 Framework for certifying convergence under minibatch and nonlinearity

3.1 Dimensionality reduction: weight-space projection and Jacobian binning

Before introducing the model for minibatch noise, it is worth revisiting the dimensions of the quantities in
Equations (6) and (7). The optimizer-related matrices Ā, B̄, C̄ are in the weight space, and their dimensions

4



are multiples of d (e.g. for gradient descent, Ā, B̄, C̄ ∈ Rd×d, and for heavy-ball and NAG, Ā ∈ R2d×2d,
B̄ ∈ R2d×d, C̄ ∈ Rd×2d). The Jacobian J has dimension N × d, where N is the number of data points
optimized on.

For any reasonable-sized optimization problem, both N and d are large enough that naively solving the
LMIs using Equations (6) and (7) would be infeasible. We propose two dimensionality reduction techniques:
weight-space projection and Jacobian binning.

Weight-space projection We do not want the LMI size to grow with the size of training data, so we
would like to remove the data dimension N from the LMI. Conveniently, the data dimension is summed over.
In the state equations, this is reflected by the fact that any quantity with dimension N is always multiplied
with J⊤. Assuming N ≥ d, we have:

J = USV ⊤, U ∈ RN×d, S, V ∈ Rd×d

Let v ∈ RN be a vector quantity with dimension N . We can project v onto the row space of U :

v′ = U⊤v

Also define J ′ = U⊤J , we have:

J⊤v = J ′⊤v′.

This way, all quantities are equivalently represented in the weight space, and the LMI size is independent of
N . For notation simplicity, we will drop the primes in the rest of the paper. Unless otherwise specified (e.g.
the derivation in Section 3.2), all quantities are in the weight space. Also, since the optimizers we consider
are invariant to the choice of basis, we can assume without loss of generality that V is identity, and that J ′

is diagonal.1

Jacobian binning To further reduce the size of the LMI, we group the Jacobian singular values into bins.
Let the singular values of J be s1, . . . , sd. It is observed that the Hessian spectrum of neural networks often
follow the power law (Zhang et al., 2019; Martin & Mahoney, 2021). Therefore, we partition the singular
values into m bins (m ≪ d), with values s̄1, . . . , s̄m arranged in logspace. We group si into the j-th bin, if
s̄j ≤ si < s̄j−1 (s̄j ≤ si if j = 1), and let the size of the i-th bin be ni. Since we have assumed without loss
of generality that J ′ is diagonal, we denote the reduced Jacobian as Jbin = diag(s̄1, . . . , s̄m).

For certifying the convergence rate, we can simply replace J with Jbin, as the convergence rate is asymptotic
across all dimensions. For steady-state risk, in addition to replacing J with Jbin, we also need to scale the
output y with the bin sizes, i.e. replace C with Cbin = diag(√n1, . . . ,

√
nm)C. Again, to avoid notation

clutter, we will drop the bin subscript in the rest of the paper, as we always apply binning to the Jacobian.

3.2 A model for minibatch noise

The noisy quadratic model uses an additive term to approximate the minibatch noise (Equation (2)). How-
ever, this model is not accurate, because the minibatch noise is multiplicative in nature. As θ converges to
the optimal soluiton θ∗, the minibatch noise should also converge to zero.

A better approximation is to model the minibatch noise as i.i.d. Bernoulli random variables multiplied to
the training data points at every optimization step. Let B be the batch size, the minibatch gradient at step
can be approximated as:

g̃B
k = ∇θ

1
B

N∑
j=1

b(j)ℓ(x(j), t(j); θk), b(j) i.i.d.∼ Ber( B
N

). (11)

1It doesn’t mean that neural network training is fully decoupled in the weight space. When introducing minibatch noise in
Section 3.2, we will see that the noise introduces coupling between weights.
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Let y(θ) = f(x; θ) be the output of the model. Expressing the gradient in the output-space, we have:

g̃B
k = 1

B

N∑
j=1

b(j)∇yℓ(x(j), t(j); θk)∇θf(x(j); θk)

= N

B
J⊤

yθ

b(1)

. . .
b(N)

 ∇yL(x, t; θk)

= J⊤
yθ

N

B

N∑
j=1

b(j)
1jj∇yL(x, t; θk)︸ ︷︷ ︸

Output-space minibatch grad ∇B
y L(x,t;θk)

We define 1jj ∈ RN×N such that all elements are 0, except that the (j, j)-th element is 1.

As in Section 3.1, decompose the Jacobian as Jyθ = USV ⊤, and project the minibatch output-space gradient
onto the weight space:

U⊤∇B
y L(x, t; θk) = N

B

N∑
j=1

b(j)U⊤
1jj∇yL(x, t; θk)

If we assume that ∇yL(x, t; θk) ∈ col(U) (which is reasonable, as we only care about the output-space
gradient that will have an effect on updating θ), then we have:

U⊤∇B
y L(x, t; θk) = N

B

N∑
j=1

b(j)U⊤
1jjUU⊤∇yL(x, t; θk) = N

B

N∑
j=1

b(j)uju⊤
j U⊤∇yL(x, t; θk)

where uj is the j-th column of U . On the right hand side, we have our usual output-space gradient projected
onto the weight space U⊤∇yL(x, t; θk). The minibatch gradient can therefore integrated into our LMI.

For convenience, we transform the Bernoulli random variable such that it’s centered at 0. Define p(j) =
B
N − b(j), we have:

U⊤∇B
y L(x, t; θk) = N

B

N∑
j=1

( B
N

− p(j))uju⊤
j U⊤∇yL(x, t; θk), p(j) =

{
B
N − 1, w. prob B

N
B
N , w. prob 1 − B

N

= U⊤∇yL(x, t; θk) − N

B

N∑
j=1

(
p(j)uju⊤

j

)
U⊤∇yL(x, t; θk)

In state equation Equation (4), replace the output-space gradient ∇yLk with the minibatch version
∇B

y L(x, t; θk) and noting Jyθ = U⊤J , we have:

ξk+1 = Āξk + B̄J⊤
yθ(∇B

y L(x, t; θk) + ϵk)

= Āξk + B̄J⊤
(

U⊤∇yL(x, t; θk) − N

B

N∑
j=1

(
p(j)uju⊤

j

)
U⊤∇yL(x, t; θk)

)
+ B̄J⊤U⊤ϵk

As before, we adopt a slight abuse of notation, and drop the projection U⊤ for the output-space signals
(∇yL(x, t; θk) and ϵk).

ξk+1 = Āξk + B̄J⊤∇yL(x, t; θk) −
N∑

j=1

(
p(j) N

B
B̄J⊤uju⊤

j

)
∇yL(x, t; θk) + B̄J⊤ϵk
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Substituting in Equation (7), we have:

ξk+1 = Āξk + B̄J⊤JC̄ξk −
N∑

j=1

( N

B
B̄J⊤uju⊤

j JC̄︸ ︷︷ ︸
−Aj

)
ξk · p(j) + B̄J⊤ϵk

Define Aj = N
B B̄J⊤uju⊤

j JC̄, we have our state equation with minibatch noise.

State Equation for Minibatch Noise

ξk+1 = Aξk +
N∑

j=1
Ajξk · p

(j)
k + Bwwk (12)

where p
(j)
k are i.i.d. zero-centered Bernoulli random variables, and

A = Ā + B̄J⊤JC̄, (13a)

Aj = −N

B
B̄J⊤uju⊤

j JC̄, for j = 1, . . . , N (13b)

Bw = B̄J⊤ (13c)

We show the LMI conditions for certifying the asymptotic convergence rate and the steady-state risk of the
NQM with minibatch noise.
Theorem 3 (Asymptotic convergence rate of NQM with minibatch noise). Consider the system in Equa-
tion (12), where the noise signals wk and p

(j)
k satisfy:

E[wk] = 0, E[p(j)
k ] = 0,

E[wkw⊤
τ ] = 0 ∀k ̸= τ, p

(j)
k are i.i.d.,

E[wkw⊤
k ] = Σ ≻ 0, E[p(j)

k p
(j)
k ] = σ2

j .

If there exists P ≻ 0 and 0 < ρ < 1 such that:

A⊤PA − ρ2P +
N∑

j=1
σ2

j A⊤
j PAj ⪯ 0 (14)

Then the expected loss 1
2E[y⊤

k yk] asymptotically converges with rate ρ.

The proof can be found in Appendix A.1. The proof techniques are similar to the proof of Theorem 1.
Theorem 4 (Steady-state error of NQM with minibatch noise). Assume the following system is well-posed:

ξk+1 = Aξk +
N∑

j=1
Ajξk · p(j) + Bwwk

yk = Cξk

where noise signals wk and p
(j)
k satisfy:

E[wk] = 0, E[p(j)
k ] = 0,

E[wkw⊤
τ ] = 0 ∀k ̸= τ, p

(j)
k are i.i.d.,

E[wkw⊤
k ] = Σ ≻ 0, E[p(j)

k p
(j)
k ] = σ2

j .

7



If there exists P ≻ 0 such that Tr(PBwΣB⊤
w ) ≤ γ2, and

A⊤PA − P +
N∑

j=1
σ2

j A⊤
j PAj + C⊤C ⪯ 0 (15)

Then we have:

lim
K→∞

1
K

K−1∑
k=0

E[y⊤
k yk] ≤ γ2

The proof can be found in Appendix A.1.

3.3 Modeling network nonlinearity

We have so far dealt with linear models. However, the gradient g (Equation 1) not a linear function of θ. In
order to model the nonlinear training dynamics, we need to model the nonlinearity in gk.

In particular, if we use squared-error loss, ∇yL is simply the identity matrix, and the nonlinearity in gk is
due to the (time-varying) Jacobian Jk.

Given the initial Jacobian J0, we express Jk as J0 with multiplicative perturbation:

Jk = (I + Mk)J0(I + Nk)⊤,

where Mk, Nk are “small”. We express the perturbation in additive terms and drop the second-order term:

Jk = (I + Mk)J0(I + Nk)⊤ ≈ J0 + MkJ0 + J0N⊤
k

We certify convergence by express the optimizer and the uncertainty (perturbation on Jacobian) as linear
matrix inequalities (LMI), then construct and solve an SDP problem. The interleaved system is shown in
Figure 2.

Optimizer

∆
pq

Figure 2: Diagram for the interleaved system with the optimizer and the Jacobian uncertainty.

Adding the components related to Jacobian uncertainty to the state equation, we have:
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Combined State Equation

The combinedstate equation for the system with Jacobian uncertainty and minibatch noise is:

ξk+1 = Aξk +
N∑

j=1
Ajξk · p

(j)
k

+ BJ⊤
0 (Mk + M⊤

k )J0Cξk︸ ︷︷ ︸
p1

+B MkJ⊤JC̄ξk︸ ︷︷ ︸
p2

+BJ⊤J M⊤
k C̄ξk︸ ︷︷ ︸
p3

+Bwwk (16)

where A, Aj , Bw are defined in Equation (13). The input and output quantities are:

q1 = JCξk p1 = ∆1q1 (∆1 = Mk + M⊤
k )

q2 = J⊤JCξk p2 = ∆2q2 (∆2 = Mk)
q3 = Cξk p3 = ∆3q3 (∆3 = M⊤

k )

We can rewrite the state equation in matrix form:


ξk+1
q1,k

q2,k

q3,k

 =


A A1 · · · AN BJ⊤ B BJ⊤J Bw

JC 0 · · · 0 0 0 0 0
J⊤JC 0 · · · 0 0 0 0 0

C 0 · · · 0 0 0 0 0





ξk

p
(1)
k
...

p
(N)
k

p1,k

p2,k

p3,k

wk


. (17)

And we define:

Â = A, B̂ =
[
BJ⊤ B BJ⊤J

]
,

Ĉ1 = JC, Ĉ2 = J⊤JC, Ĉ3 = C,

D̂1 =
[
0 0 · · · 0

]
, D̂2 =

[
0 0 · · · 0

]
, D̂3 =

[
0 0 · · · 0

]
.

We certify the stability of the system under uncertainty in ∆1, ∆2, ∆3 by applying ℓ2 constraints for (p1, q1),
(p2, q2) and (p3, q3) pairs.
Theorem 5 (Certifying convergence rate for nonlinear model). Consider the system in Equation (17) where
the noise signals wk and p

(j)
k satisfy:

E[wk] = 0, E[p(j)
k ] = 0,

E[wkw⊤
τ ] = 0 ∀k ̸= τ, p

(j)
k are i.i.d.,

E[wkw⊤
k ] = Σ ≻ 0, E[p(j)

k p
(j)
k ] = σ2

j .

Given δ1, δ2, δ3 ≥ 0, if there exists a positive-definite matrix P , 0 < ρ < 1, and λ1, λ2, λ3 ≥ 0 such that:[
I

Â B̂

]⊤ [
−ρ2P

P

] [
I

Â B̂

]
+

N∑
j=1

σ2
j

[
Aj 0

]⊤
P

[
Aj 0

]
+

3∑
l=1

λl

[
Ĉl D̂l

]⊤
[
δ2

l I
−I

] [
Ĉl D̂l

]
⪰ 0,

then the expected loss 1
2E[y⊤

k yk] asymptotically converges with rate ρ.
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Theorem 6 (Steady-state risk for nonlinear model). Consider the system in Equation (17) where the noise
signals wk and p

(j)
k satisfy:

E[wk] = 0, E[p(j)
k ] = 0,

E[wkw⊤
τ ] = 0 ∀k ̸= τ, p

(j)
k are i.i.d.,

E[wkw⊤
k ] = Σ ≻ 0, E[p(j)

k p
(j)
k ] = σ2

j .

Given δ1, δ2, δ3 ≥ 0, if there exists a positive-definite matrix P , 0 < ρ < 1, and λ1, λ2, λ3 ≥ 0 such that:[
I

Â B̂

]⊤ [
−ρ2P

P

] [
I

Â B̂

]
+

N∑
j=1

σ2
j

[
Aj 0

]⊤
P

[
Aj 0

]
+

3∑
l=1

λl

[
Ĉl D̂l

]⊤
[
δ2

l I
−I

] [
Ĉl D̂l

]
+

[
C 0

]⊤ [
C 0

]
⪰ 0,

and that Tr(PBwΣB⊤
w ) ≤ γ2, then we have:

lim
K→∞

1
K

K−1∑
k=0

E[y⊤
k yk] ≤ γ2.

4 Simulations

4.1 Quadratic model with minibatch noise

First, we consider the quadratic model with minibatch noise. In this case, there is no uncertainty in the model
Jacobian (δ1 = δ2 = 0). This scenario is similar to the noisy quadratic model in Zhang et al. (2019), but
with important differences: 1) we model minibatch training as multiplicative noise (Section 3.2), as opposed
to an additive gradient noise in Zhang et al. (2019); 2) in addition to the classic (heavy-ball) momentum, we
also analyze the Nesterov accelerated gradient (NAG), which is not considered in Zhang et al. (2019) due to
its lack of closed-form solution. With only minibatch noise and our assumption of overparameterized model,
the steady-state risk is zero. Therefore, our analysis focuses on the convergence rate.

Insight 1: in minibatch training, heavy-ball is fragile to learning rate increases past the critical
damping threshold. Large learning rates leads to worse convergence rate and sometimes instability.

The NQM (Zhang et al., 2019) predicts that, as batch size increases, the optimal learning rate first linearly
increases, resulting in perfect scaling of convergence rate and batch size. However, once going beyond a certain
threshold, increasing the learning rate no longer improves the convergence rate, resulting in diminishing
returns of scaling up of the batch size. This is due to the fact that the optimization enters the curvature-
dominated regime, where large learning rates leads to oscillations, characteristic of an overdamped system.
According to the NQM, when increasing the learning rate in the curvature-dominated regime, the convergence
rate holds constant. In full-batch training (B = N), this matches the prediction of our framework (the “bs =
2000” curve in Figure 3a). However, we find that in minibatch training, increasing the batch size past the
critical damping threshold actually hurts the convergence rate, and may lead to instability. The performance
degradation at large learning rates worsens with smaller batch sizes. This effect is more pronounced at large
momentum values (Figures 3a, 10a and 11a show β = 0.999, 0.9, 0.9 respectively).

We note that our insight on the fragility of heavy-ball momentum in minibatch training is consistent with
empirical observations when using heavy-ball momentum in deep learning. Unlike the NQM, our LMI
framework is able to predict this effect due to proper modeling of the minibatch noise.

Insight 2: in minibatch training, NAG is more robust than heavy-ball momentum at large learning
rates.
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In contrast to heavy-ball momentum, our LMI framework predits that NAG is much more robust at large
learning rates.Figure 3b shows that, with a reasonably large batch size (such as 100) and a very large
momentum value (β = 0.999), increasing the minibatch size past the critical damping threshold does not
hurt the convergence rate. In Figure 4, we see that compared to HB, NAG can benefit from a larger
learning rate with large momentum values. This prediction agrees with observations and anaysis in other
works. Sutskever et al. (2013) noted that the difference of HB and NAG is only distinct when the learning
rate is reasonably large, and that NAG behaves more stably than HB in many situations. Sutskever et al.
(2013) argues that the NAG’s comparative stability is due to the fact that it changes the momentum in a
quicker and more responsive way. Rather than relying on heuristics, our framework provides a principled
and quantitative explanation.

Insight 3: NAG extends scaling slightly further than heavy-ball momentum, especially at large mo-
mentum values.

An interesting observation for NAG is that although increasing the learning rate past the critical damping
threshold initially yields no benefit in convergence rate, if the learning rate is further increased, we start
observing an “up-tick” again in Figure 3b. When plotted against the batch size, we see that NAG extends
the benefit of parallelization slightly further than heavy-ball momentum (Figures 3c and 3d). However, we
note that this observation is only prominent for very large very large momentum values (e.g. β = 0.999).
For β = 0.99 (Figures 10b and 10d), we see a much lesser extension effect for batch size scaling. For β = 0.9
(Figures 11b and 11d), there is little difference from heavy-ball momentum. This limits the practical value
of this insight, as using a very large momentum value slows down convergence (Figure 5) and makes training
unstable.

4.2 Nonlinear training dynamics

Insight 4: NAG is more robust to training nonlinearities than heavy-ball momentum.

We quantify the different optimizers’ robustness to nonlinear training dynamics using our Jacobian un-
certainty modeling in Section 3.3. In Figure 6, we show the convergence rate as a function of Jacobian
uncertainty. Compared to heavy-ball momentum, we can certify a better convergence rate for NAG under
model uncertainty, both for the full-batch (Figure 6) and minibatch (Figure 12) cases. This insights adds to
the previous arguments for robustness of NAG.
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(c) Convergence rate vs. batch size (HB, β = 0.999)
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(d) Convergence rate vs. batch size (NAG, β = 0.999)

Figure 3: With large momentum, NAG is more robust than HB at larger learning rates at small
batch sizes. With large momentum and learning rates, the system becomes overdamped.
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Figure 4: NAG allows larger learning rates than heavy-ball momentum. Optimal learning rate
vs. batch size in NQM with minibatch noise, for heavy-ball momentum and NAG, for different momentum
values. With large momentum values, the optimal learning rate for NAG still scales well with batch size,
whereas heavy-ball momentum suffers from instability at large learning rates.
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Figure 5: Convergence rate of heavy-ball and NAG with different momentum values.
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(a) Heavy-ball, β = 0.9
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(b) Nesterov, β = 0.9
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(c) Heavy-ball, β = 0.99
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(d) Nesterov, β = 0.99

Figure 6: NAG is more robust than HB when subjected to nonlinearity. Convergence rate as a
function of the amount of Jacobian uncertainty (full batch). For each point on the heatmap, we plot the
best convergence rate searched over learning rate.
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5 Background: heavy-ball momentum and Nesterov accelerated gradient

Theoretical & empirical results It is often observed in practice that NAG enjoys better performance
and robustness than heavy-ball momentum (Sutskever et al., 2013; Choi et al., 2019). However, theoretical
evidences are nuanced and often lacking. In the class of smooth, convex functions, NAG (with proper learning
rate schedule) has the optimal convergence rate in first-order optimizers (Nesterov, 1983), whereas heavy-
ball momentum has no convergence guarantee (Lessard et al., 2016). In more realistic scenarios, however,
there is little theoretical evidence on the advantages of NAG. For certain types of overparameterized neural
networks, NAG converges to the global minimum with a similar or worse rate than HB (Bu et al., 2021; Liu
et al., 2022a;b). For stochastic setting with small batch sizes, neither momentum methods can outperform
SGD (Kidambi et al., 2018).

“Lookahead” gradient in NAG There have been many works that attempt to explain NAG’s superior
performance and robustness. Intuitively, NAG evaluates the gradient at a partial update location, instead
of at the current location as heavy-ball momentum (Figure 7). This “lookahead” step in gradient evaluation
allows NAG to adapt the momentum in a quicker and more responsive way, and to reduce oscillation along
high-curvature directions, which leads to NAG being more tolerent to larger momentum values (Sutskever
et al., 2013). The analysis in Sutskever et al. (2013) gives helpful intuition, but lacks rigor. As we will
show in the following paragraphs, the “lookahead” step has a more principled explanation using the control
interpretations.

Figure 7: Taken from Figure 1 in Sutskever et al. (2013). (Top) Heavy-ball momentum. (Bottom) Nesterov
accelerated gradient. Heavy-ball momentum evaluates the gradient g(θt) at the current location, while the
NAG gradient evaluation g(θt+1) has a “lookahead” step.

Continuous-time limits and ODEs Another line of work focuses on the continuous-time limit of the
optimizer dynamics. Polyak (1964) motivated the proposed momentum method as “the method of a small
heavy sphere” that moves in a potential field (hence the name “heavy-ball momentum”). A more accurate
physical analogy should be “a point mass moving in a potential field through a viscous medium” (Qian, 1999).
The viscous medium causes friction that is proportional to the velocity. The dynamics can be described by
the following second-order ODE:

mẍ + bẋ + ∇V (x) = 0, (18)

where x is the position of the point mass (analogous to θ in optimizers), m is the mass, b is the viscous
damping coefficient, and ∇V (x) is the potential field. We obtain the heavy-ball momentum method by
discretizing Equation (18) using the forward Euler method (Qian, 1999). Let ∆t be the time step, the
discretized dynamics is:

m
xt+∆t − 2xt + xt−∆t

∆t2 + b
xt+∆t − xt

∆t
+ ∇V (xt) = 0.

Rearranging, we recover the heavy-ball momentum method with learning rate η = ∆t2

m+b∆t and momentum
β = m

m+b∆t :

xt+∆t = xt + m

m + b∆t
(xt − xt−∆t) − ∆t2

m + b∆t
∇V (xt).

15



However, the naive approach for taking continuous-time limit is not useful for distinguishing NAG from
HB. If we take ∆t → 0, HB and NAG have the same limiting ODE (Equation (18)) (Shi et al., 2022). To
address this, Shi et al. (2022) proposed an alternative limiting process that yields high-resolution ODEs,
which differentiates NAG and HB. The high-resolution ODE for HB and NAG are given by:

HB: mẍ + bẋ + (1 + b∆t

2m
)∇V (x) = 0, (19a)

NAG: mẍ +
(
b + ∆t

m
∇2V (x)

)
ẋ + (1 + b∆t

2m
)∇V (x) = 0. (19b)

The high-resolution ODEs have kept the ∆t terms, and in the infinitesimal limit recover Equation (18).
Notably, NAG has an additional damping term, which is proportional to the Hessian of the loss function.
According to the ODE, NAG takes more cautious steps along high-curvature directions, which generally
helps reduce oscillations. The high-resolution ODEs are shown to better match simulations of HB and NAG
than the naive version, and empirical results support that NAG signficantly reduces oscillation (Shi et al.,
2022).

Control interpretations Rather than treating the optimizer as an inherent dynamical system that re-
sponds to an external force ∇V (x) (as in Equation (18)), we can adopt the opposite view and treat the
optimizer as a controller (Hu & Lessard, 2017a). In the control view, ∇V (x) (analogous to gradient ∇L in
optimization) is the plant that has its own dynamics, and we would like to design a controller (optimizer) that
stabilizes the plant (make the gradient ∇L go to zero). This is visualized in the block diagram in Figure 8.

Optimizer (controller) ∇L (plant)

Figure 8: Block diagram showing the control view of the optimization process.

Since first-order optimizers are linear time-invariant (LTI) systems, we can analyze their properties using
transfer functions. Applying the z-transform to the optimizer update equations, we get the following transfer
functions for gradient descent, HB and NAG:

GGD(z) = − η

z − 1 , GHB(z) = − η

z − 1 · z

z − β
, GNAG(z) = − η

z − 1 · (1 + β)z − β

z − β

From the transfer function, we can see that gradient descent corresponds to an integral controller. An
integral controller (transfer function KI

z−1 ) produces control signal that is proportional to the sum of past
errors, which is necessary to eventually drive the error to zero. Unsurprisingly, the transfer functions of HB
and NAG both contain an integral control component.

The acceleration of the momentum methods is reflected by the additional components in their transfer
functions. Heavy-ball has an additional z

z−β term, which is a lag compensator. A lag compensator boosts
low-frequency gain and introduces a phase lag (Figure 9). In optimization, our objective is to asymptotically
drive the gradient ∇L to zero, which is a low frequency signal to track (in fact, frequency ω = 0). A
boost in low-frequency gain results in faster asymptotic convergence rate. This is apparent when we set the
frequency ω = 0, we have z = ejω = 1, and z

z−β = 1
1−β , recovering heavy-ball momentum’s 1

1−β improvement
in convergence rate for quadratic loss functions.

NAG is also the combination of an integrator and a lag compensator. With the same learning rate and
momentum parameter, it has the same low-frequency gain as HB (GNAG(z) = GHB(z) when z = 1), hence
the same asymptotic convergence rate. However, it has a zero at β

1+β instead of 0, which leads to a smaller
phase lag. On the Bode plot (Figure 9), this leads to a flatter slope at the crossover frequency and a larger
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phase margin compared to HB, which contribute to NAG’s improved robustness. The comparative fragility
of HB may explain its lack of convergence guarantee for general strongly convex functions (Hu & Lessard,
2017a).
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Figure 9: Bode plot showing gradient descent, HB and NAG (learning rate η = 0.5, momentum β = 0.9).
The Bode plot shows the magnitude and phase of the optimizer responses, plotted against gradient signal
frequency from 0 to the Nyquist frequency (with sampling rate 1, Nyquist freq. = 1/2, shown as the red
dashed line). At low frequency, both HB and NAG have the same magnitude (20 log10

1
1−β = 20dB higher

than GD), meaning that they both have 1
1−β improvement in asymptotic convergence rate for quadratic

loss functions. However, the high frequency responses are different: NAG has a flatter slope at crossover
frequency, and the smaller phase lag of NAG leads to a larger phase margin (the phase at crossover frequency,
taken difference with 0◦ due to positive feedback) than HB. These indicate that NAG is more robust to high-
frequency gradient noise.

Additionally, NAG can be viewed as incorporating derivative control in its dynamics (Hu & Lessard, 2017a).
We can rewrite the NAG update as:

uk+1 = uk + β(uk − uk−1) − η∇L(uk) − ηβ(∇L(uk) − ∇L(uk−1)) (20)

The last term in Equation (20) is a form of derivative control. Derivative control predicts future behavior
based on local trends. This matches NAG’s “lookahead” interpretation in Sutskever et al. (2013). Alltogether,
NAG can be viewed as a form of the celebrated Proportional–integral–derivative (PID) controller (Astrom,
1995; Hu & Lessard, 2017a).

6 Related work

The noisy quadratic model (NQM) (Zhang et al., 2019) gives important insights on how the optimization
performance scales with batch sizes, and how such scaling interacts with factors such as momentum, moving
average and preconditioning. This work extends the insights of NQM by adopting proper minibatch noise
models, and by incorporating nonlinear training dynamics. However, a limitation of our approach is that we
focus on asymptotic performance, whereas NQM predicts finite-step loss values.
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Lessard et al. (2016) first proposed to use the robust control framework for the analysis and design of
optimizers. In this framework, the optimization is viewed as a dynamical system, and the convergence is
expressed as the feasibility problem of a semi-definite program (SDP). Our analysis is based on the same
framework. In Lessard et al. (2016), much of the effort is focused on designing integral-quadratic constraints
(IQCs) for classical problem types in optimization (such as quadratic, smooth convex). In contrast, we
focus on the case of neural network training, and propose a model for nonlinear dynamics and minibatch
noise. Several follow-up works take dissipativity theory approach (Hu & Lessard, 2017b; Lessard, 2022),
which are mathematically equivalent to the original IQC framework (Lessard et al., 2016), but may result in
smaller LMIs. Hu et al. (2021) adapts the framework to stochastic gradient descent. However, they seek the
worst-case performance with respect to the gradient noise, which is too conservative for minibatch training.
Instead, we take the average-case performance with respect to our minibatch noise model.

A competing line of work is on the Performance Estimation Problem (PEP) (Drori & Teboulle, 2014; Taylor
et al., 2017; 2018; Taylor & Bach, 2019). PEP also studies the worst-case performance of optimization
problems by numerically solving SDPs. In contrast to the robust control based methods, PEP treats the
optimization steps explicitly. This gives PEP the advantange of allowing finite-step loss bounds, whereas
the robust control framework only certifies asymptotic performance. However, PEP scales poorly with the
number of optimization steps, especially with complex problem classes and stochastic settings. We defer it
to future work to obtain finite-step, NQM-like performance bounds using PEP.
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A Appendix

A.1 Proofs

Proof of Theorem 1. Multiply both sides of equation 8 by ξk − ξ∗, we get:

(ξk − ξ∗)⊤A⊤PA(ξk − ξ∗) − ρ2(ξk − ξ∗)⊤P (ξk − ξ∗) ≤ 0 (21)

Applying the dynamical equation equation 6 to (ξk − ξ∗)⊤P (ξk − ξ∗) and taking expectation, we get:

E[(ξk − ξ∗)⊤P (ξk − ξ∗)] = Eϵk−1 [
(
A(ξk−1 − ξ∗) + Bwϵk−1

)⊤
P

(
A(ξk−1 − ξ∗) + Bwϵk−1

)
]

= E[(ξk−1 − ξ∗)⊤A⊤PA(ξk−1 − ξ∗)] + 2E[(ξk−1 − ξ∗)⊤A⊤PBwϵk−1] + E[ϵ⊤
k−1B⊤

w PBwϵk−1]
= E[(ξk−1 − ξ∗)⊤A⊤PA(ξk−1 − ξ∗)] + Tr(B⊤

w PBw)

Substituting into equation 21, taking the expectation and multiplying by ρ−2k, we get a telescoping series:

0 ≥
k−1∑
l=0

ρ−2lE[(ξl − ξ∗)⊤A⊤PA(ξl − ξ∗) − ρ2(ξl − ξ∗)⊤P (ξl − ξ∗)]

= ρ−2(k−1)E[(ξk−1 − ξ∗)⊤A⊤PA(ξk−1 − ξ∗)]
− ρ−2(k−2)E[(ξk−1 − ξ∗)⊤P (ξk−1 − ξ∗)] + ρ−2(k−2)E[(ξk−2 − ξ∗)⊤A⊤PA(ξk−2 − ξ∗)]
− · · ·
− ρ0E[(ξ1 − ξ∗)⊤P (ξ1 − ξ∗)] + ρ0E[(ξ0 − ξ∗)⊤A⊤PA(ξ0 − ξ∗)]
− ρ2E[(ξ0 − ξ∗)⊤P (ξ0 − ξ∗)]

= ρ−2(k−1)
(
E[(ξk − ξ∗)⊤P (ξk − ξ∗)] − Tr(B⊤

w PBw)
)

+ ρ−2(k−2)
(

− E[(ξk−1 − ξ∗)⊤P (ξk−1 − ξ∗)] + E[(ξk−1 − ξ∗)⊤P (ξk−1 − ξ∗)] − Tr(B⊤
w PBw)

)
+ · · ·

+ ρ0
(

− E[(ξ1 − ξ∗)⊤P (ξ1 − ξ∗)] + E[(ξ1 − ξ∗)⊤P (ξ1 − ξ∗)] − Tr(B⊤
w PBw)

)
− ρ2E[(ξ0 − ξ∗)⊤P (ξ0 − ξ∗)]

= ρ−2(k−1)E[(ξk − ξ∗)⊤P (ξk − ξ∗)] − ρ2E[(ξ0 − ξ∗)⊤P (ξ0 − ξ∗)] −
(

1 + ρ−2 + · · · + ρ−2(k−1)
)

Tr(B⊤
w PBw)

Rearranging, we have:

E[(ξk − ξ∗)⊤P (ξk − ξ∗)] ≤ ρ2kE[(ξ0 − ξ∗)⊤P (ξ0 − ξ∗)] + ρ2(k−1)
(

1 + ρ−2 + · · · + ρ−2(k−1)
)

Tr(B⊤
w PBw)

= ρ2kE[(ξ0 − ξ∗)⊤P (ξ0 − ξ∗)] + 1 − ρ2k

1 − ρ2 Tr(B⊤
w PBw)

The quadratic loss function is:

Lk = 1
2θ⊤

k Hθk = 1
2ξ⊤

k C̄⊤HC̄ξk = ξ⊤
k Mξk, M := 1

2 C̄⊤HC̄

Since M is positive-semidefinite, we replace P with M1/2(M1/2)†P (M1/2)†M1/2 and get:
1
2E[(ξk − ξ∗)⊤M(ξk − ξ∗)] ≤ cond((M1/2)†P (M1/2)†) · ρ2k 1

2E[(ξ0 − ξ∗)⊤M(ξ0 − ξ∗)]

+ σ−1
min((M1/2)†P (M1/2)†) · 1 − ρ2k

1 − ρ2 Tr(B⊤
w PBw)
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We restrict our attention to the dimensions in M with non-zero eigenvalues, because the singular dimensions
do not contribute to the loss. This way, σ−1

min((M1/2)†P (M1/2)†) and cond((M1/2)†P (M1/2)†) are well-
defined. The loss Lk has exponential convergence with rate ρ2.

Proof of Theorem 2. Let Pk be the variance of the state ξ at time k,

Pk = E[(ξk − ξ̄k)(ξk − ξ̄k)⊤], ξ̄k := E[ξk]

Notice that since ϵk is zero-centered i.i.d. noise, ξ̄ evolves autonomously.

ξ̄k+1 = Aξ̄k

Without loss of generality, we assume ξ0 = 0. Then, we have ξ̄k = 0 for all k, and Pk = E[ξkξ⊤
k ]. Substituting

in the solution of equation 6 ξk = Akξ0 +
∑k−1

l=0 Ak−1−lBwϵl, we get:

Pk+1 = APkA⊤ + BwB⊤
w

Since A is stable (spec(A) has radius less than 1), limk→∞ Pk = P where,

APA⊤ − P + BwB⊤
w = 0

The steady-state risk is the variance of the output yk (ȳk := E[yk] = Cξ̄k = 0):

lim
K→∞

1
K

K−1∑
k=0

Tr(E[yky⊤
k ]) = Tr(CPC⊤).

Proof of Theorem 3. Multiply Equation (14) by ξk − ξ∗ on both sides, we have:

(ξk − ξ∗)⊤A⊤PA(ξk − ξ∗) − ρ2(ξk − ξ∗)⊤P (ξk − ξ∗) +
N∑

j=1
σ2

j (ξk − ξ∗)⊤A⊤
j PAj(ξk − ξ∗) ⪯ 0 (22)

Applying the dynamical equation Equation (12) to (ξk − ξ∗)⊤P (ξk − ξ∗) and take expectation, we have:

E[(ξk − ξ∗)⊤P (ξk − ξ∗)] = E
[(

A(ξk−1 − ξ∗) +
N∑

j=1
Aj(ξk−1 − ξ∗) · p

(j)
k−1 + Bwϵk−1

)⊤

P

(
A(ξk−1 − ξ∗) +

N∑
j=1

Aj(ξk−1 − ξ∗) · p
(j)
k−1 + Bwϵk−1

)]

= E[(ξk−1 − ξ∗)⊤A⊤PA(ξk−1 − ξ∗)] +
N∑

j=1
E[(ξk−1 − ξ∗)⊤A⊤

j PAj(ξk−1 − ξ∗)] · E[(p(j))2]

+ E[ϵ⊤
k−1B⊤

w PBwϵk−1]

= E[(ξk−1 − ξ∗)⊤A⊤PA(ξk−1 − ξ∗)] +
N∑

j=1
σ2

jE[(ξk−1 − ξ∗)⊤A⊤
j PAj(ξk−1 − ξ∗)] + Tr(B⊤

w PBw)

= E
[
(ξk−1 − ξ∗)⊤

(
A⊤PA +

N∑
j=1

σ2
j A⊤

j PAj

)
(ξk−1 − ξ∗)

]
+ Tr(B⊤

w PBw)

22



Substituting into Equation (22) and multiplying by ρ−2k, we get a telescoping series:

0 ≥
k−1∑
l=0

ρ−2lE[(ξl − ξ∗)⊤A⊤PA(ξl − ξ∗) − ρ2(ξl − ξ∗)⊤P (ξl − ξ∗) +
N∑

j=1
σ2

j (ξl − ξ∗)⊤A⊤
j PAj(ξl − ξ∗)]

= ρ−2(k−1)E[(ξk−1 − ξ∗)⊤
(

A⊤PA +
N∑

j=1
σ2

j A⊤
j PAj

)
(ξk−1 − ξ∗)]

− ρ−2(k−2)E[(ξk−1 − ξ∗)⊤P (ξk−1 − ξ∗)] + ρ−2(k−2)E[(ξk−2 − ξ∗)⊤
(

A⊤PA +
N∑

j=1
σ2

j A⊤
j PAj

)
(ξk−2 − ξ∗)]

− · · ·

− ρ0E[(ξ1 − ξ∗)⊤P (ξ1 − ξ∗)] + ρ0E[(ξ0 − ξ∗)⊤
(

A⊤PA +
N∑

j=1
σ2

j A⊤
j PAj

)
(ξ0 − ξ∗)]

− ρ2E[(ξ0 − ξ∗)⊤P (ξ0 − ξ∗)]

= −ρ−2(k−1)
(
E[(ξk − ξ∗)⊤P (ξk − ξ∗)] − Tr(B⊤

w PBw)
)

−
(

ρ−2(k−2) + · · · + ρ0
)

Tr(B⊤
w PBw)

− ρ2E[(ξ0 − ξ∗)⊤P (ξ0 − ξ∗)]

= −ρ−2(k−1)E[(ξk − ξ∗)⊤P (ξk − ξ∗)] − ρ2E[(ξ0 − ξ∗)⊤P (ξ0 − ξ∗)] −
(

1 + ρ−2 + · · · + ρ−2(k−1)
)

Tr(B⊤
w PBw)

The rest of the proof follows the same steps as in the proof of Theorem 1.

Proof. Let V (ξk) = ξ⊤
k Pξk. Then,

V (ξk+1) − V (ξk) = ξ⊤
k A⊤PAξk + 2ξ⊤

k A⊤P
( N∑

j=1
Ajξk · p(j) + Bwwk

)
+

( N∑
j=1

Ajξk · p(j) + Bwwk

)⊤
P

( N∑
j=1

Ajξk · p(j) + Bwwk

)
− ξ⊤

k Pξk

Taking expectation, many terms (marked in red) drop out:

E[V (ξk+1)] − E[V (ξk)] = E[ξ⊤
k A⊤PAξk] − E[ξ⊤

k Pξk] + 2E[ξ⊤
k A⊤P

( N∑
j=1

Ajξk · p(j) + Bwwk

)
]

+ E[
( N∑

j=1
Ajξk · p(j) + Bwwk

)⊤
P

( N∑
j=1

Ajξk · p(j) + Bwwk

)
]

= E[ξ⊤
k A⊤PAξk] − E[ξ⊤

k Pξk] +
N∑

j=1
E[ξ⊤

k A⊤
j PAjξk · (p(j))2] + E[w⊤

k B⊤
w PBwwk]

+ 2
N∑

i=1

N∑
j=1,i̸=j

E[ξ⊤
k A⊤

i PAjξk · p(i)p(j)] + 2
N∑

j=1
E[ξ⊤

k A⊤
j PBw · p(j)wk]

= E
[
ξ⊤

k

(
A⊤PA − P +

N∑
j=1

σ2
j A⊤

j PAj

)
ξk

]
+ E[w⊤

k B⊤
w PBwwk]
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Multiply Equation (15) by ξk on both sides and substitute in the above, we have:

E[V (ξk+1)] − E[V (ξk)] ≤ −E[ξ⊤
k C⊤Cξk] + E[w⊤

k B⊤
w PBwwk] = −E[y⊤

k yk] + Tr(PBwΣB⊤
w )

Taking average from k = 0 to K − 1, we have:

1
K

(
E[V (ξK)] − E[V (ξ0)]

)
≤ Tr(PBwΣB⊤

w ) − 1
K

K−1∑
k=0

E[y⊤
k yk]

Since the system is well-posed, E[V (ξK)] − E[V (ξ0)] is bounded. Therefore, the left-hand-side reduces to
zero as K → ∞, and we have:

lim
K→∞

1
K

K−1∑
k=0

E[y⊤
k yk] ≤ Tr(PBwΣB⊤

w ) ≤ γ2.

A.2 Additional simulation results
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(a) Convergence rate vs. learning rate (HB, β = 0.99)

10 4 10 3 10 2 10 1 100

Learning rate

10 7

10 6

10 5

10 4

10 3

1 
- 

=0.99, N=2000, 1=0.0, 2=0.0
bs=2000
bs=1000
bs=500
bs=100
bs=20
bs=5

(b) Convergence rate vs. learning rate (NAG, β = 0.99)

101 102 103

Batch size

100

9.95 × 10 1

9.96 × 10 1

9.97 × 10 1

9.98 × 10 1

9.99 × 10 1

NQM, =0.99, N=2000

10 5

10 4

10 3

10 2

10 1

100

Le
ar

ni
ng

 ra
te

(c) Convergence rate vs. batch size (HB, β = 0.99)
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(d) Convergence rate vs. batch size (NAG, β = 0.99)

Figure 10: With large momentum, NAG is more robust than HB at larger learning rates at
small batch sizes. With large momentum and learning rates, the system becomes overdamped.
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(a) Convergence rate vs. learning rate (HB, β = 0.9)

10 4 10 3 10 2 10 1 100

Learning rate

10 6

10 5

10 4

10 3

10 2

1 
- 

=0.9, N=2000, 1=0.0, 2=0.0
bs=2000
bs=1000
bs=500
bs=100
bs=20
bs=5

(b) Convergence rate vs. learning rate (NAG, β = 0.9)

101 102 103

Batch size

100

9.9 × 10 1

9.92 × 10 1

9.94 × 10 1

9.96 × 10 1

9.98 × 10 1

NQM, =0.9, N=2000

10 5

10 4

10 3

10 2

10 1

100

Le
ar

ni
ng

 ra
te

(c) Convergence rate vs. batch size (HB, β = 0.9)
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(d) Convergence rate vs. batch size (NAG, β = 0.9)

Figure 11: With large momentum, NAG is more robust than HB at larger learning rates at
small batch sizes. With large momentum and learning rates, the system becomes overdamped.
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(a) Heavy-ball, β = 0.9
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(b) Nesterov, β = 0.9
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(c) Heavy-ball, β = 0.99
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(d) Nesterov, β = 0.99

Figure 12: Convergence rate as a function of the amount of Jacobian uncertainty (batch size 20). For each
point on the heatmap, we plot the best convergence rate searched over learning rate.
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(a) Heavy-ball, β = 0.9
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(b) Nesterov, β = 0.9
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(c) Heavy-ball, β = 0.99
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(d) Nesterov, β = 0.99

Figure 13: Optimal learning rate used to certify the convergence rates in Figure 6.
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(a) Heavy-ball, β = 0.9
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(b) Nesterov, β = 0.9
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(c) Heavy-ball, β = 0.99
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(d) Nesterov, β = 0.99

Figure 14: Optimal learning rate used to certify the convergence rates in Figure 12.
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